
A Real-Time Coded OFDM Acoustic Modem in Very Shallow Underwater Communications

Presented by: Kun Zhong Swee Sen Quek Tiong Aik Koh Bien Aik Tan **DSO National Laboratories**

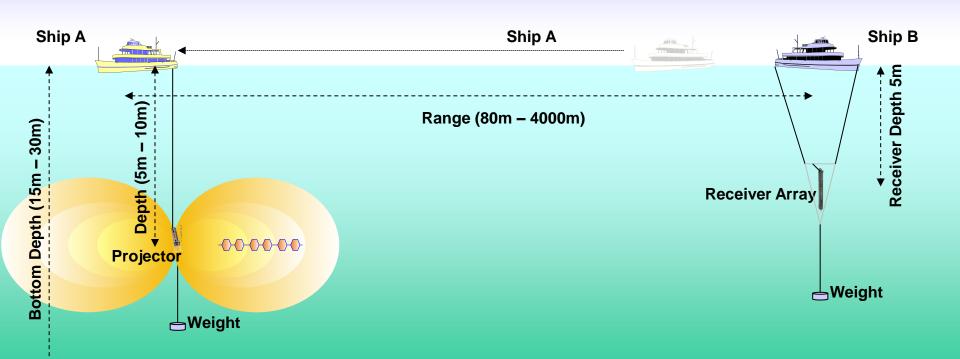
CONTENTS

- Introduction
- Objectives
- Trial Setup
- Communication Scheme
- Performance
- Future Work
- Summary

INTRODUCTION

- Typical COTS modems performed at 200-300bps @ BER ~ 10⁻⁷ - 10⁻⁶ for distances up to 2400m (Actual shallow water performance evaluated by DSO)
- July 2004 assembled a team of acoustics and communication engineers

OBJECTIVES

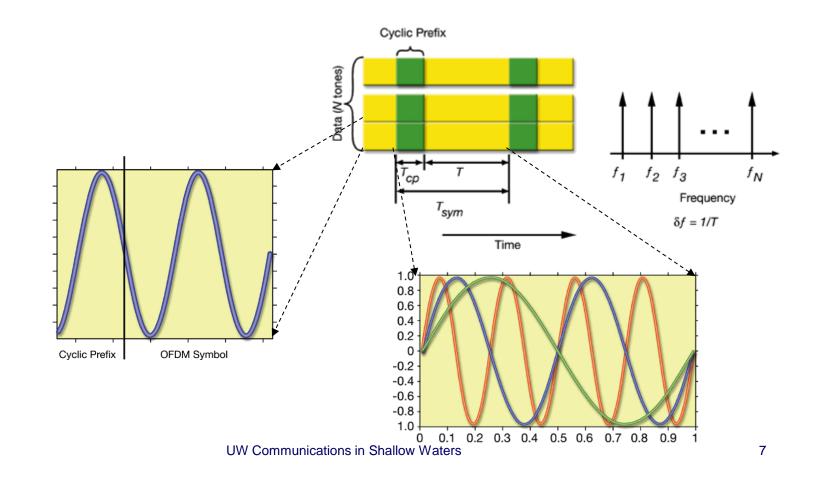


- Study of local shallow waters
 - OMeasurements / Develop channel model
- Developed a versatile and reconfigurable underwater acoustic communications test bed
- Investigate and evaluate communications processing techniques
 - OFDM
 - OTurbo Product Codes

HARDWARE OVERVIEW



SEA TRIAL SETUP



Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing

OEasy to combat multipaths by cyclic extension.

ORobust against impulsive shrimp noise.

 Mild channel Doppler spread – OFDM not suffer severe inter-carrier interference (ICI).

Why DPSK on each sub-carrier

Slow channel fading allows time-domain DPSK.

Simplified receiver design – no channel estimation.

 Transmit in bursts, 12 frames in one burst, each burst starts with an Automatic Gain Control (AGC) preamble.

AGC	OFDM	OFDM	OFDM
	Frame 1	Frame	Frame 12

Waveform Structure (Cntd.)
Within one OFDM frame: 2 OFDM training symbols, 18 OFDM data symbols

Time	Guard	OFDM	OFDM	OFDM	OFDM
Sync	Bits	Training	Data	Data	Data
Preamble		Syms	Sym 1	Sym	Sym 18

Time	Guard	OFDM	OFDM	OFDM	OFDM
Sync	Bits	Training	Data	Data	Data
Preamble		Syms	Sym 1	Sym	Sym 18

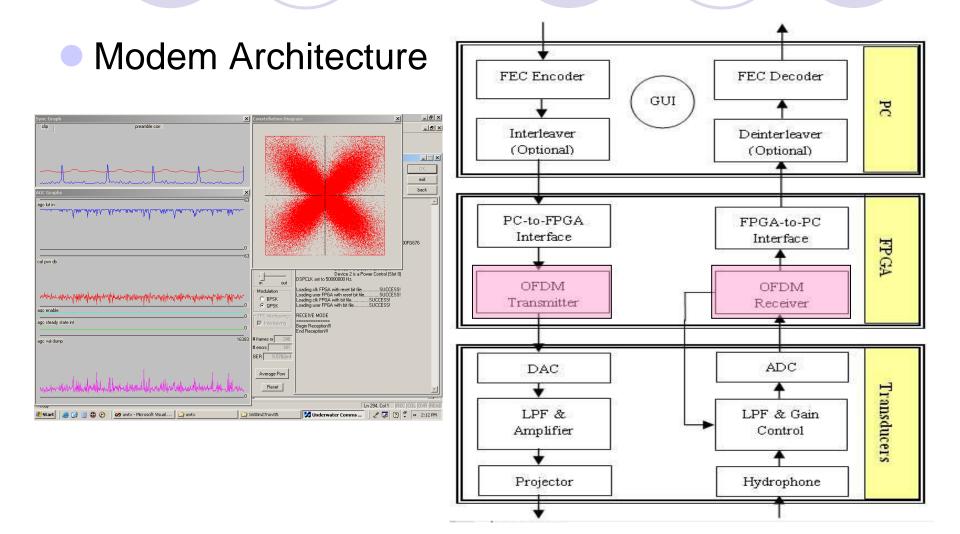
- Single-carrier BPSK modulated time sync preamble
 - Easy to design time-domain binary sequence with good correlation property for receiver sync.
- Guard bits are actually cyclic extension of the time sync sequence
 - Sharper resolution of receiver sync correlator output

Time	Guard	OFDM	OFDM	OFDM	OFDM
Sync	Bits	Training	Data	Data	Data
Preamble		Syms	Sym 1	Sym	Sym 18

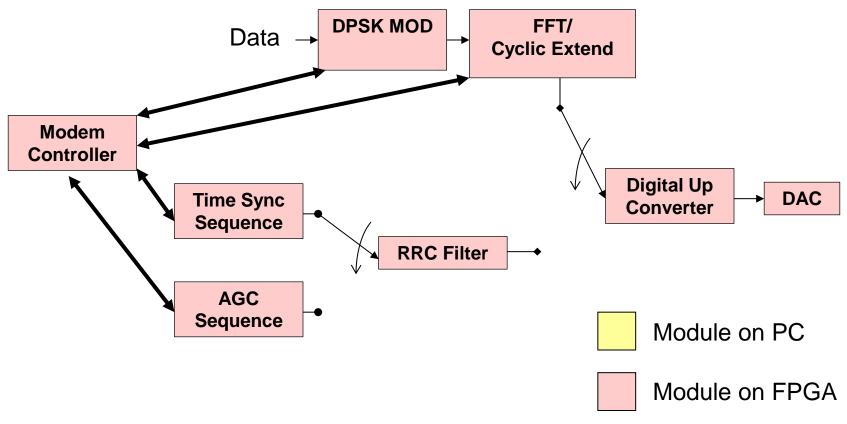
- Two identical OFDM training symbols for fine frequency offset estimation (FOE)
 - ○FOE using Moore's method.
 - Ocyclic extensions surrounding the 2 training symbols and no cyclic extension between them.
 - ○No coarse frequency offset estimation because
 - channel Doppler effect is small
 - transducers introduce little FO
 - frequency up and down conversions are done all digitally with high precision (FO < 10 Hz)

Time	Guard	OFDM	OFDM	OFDM	OFDM
Sync	Bits	Training	Data	Data	Data
Preamble		Syms	Sym 1	Sym	Sym 18

- Each data symbol has both cyclic prefix and postfix.
- Why postfix?
 - Receiver designed to synchronize with the dominant path;
 - Dominant path need not be the first-arriving path when range is short;
 - In case that dominant path is not the firstarriving path, ISI will occur if no postfix!

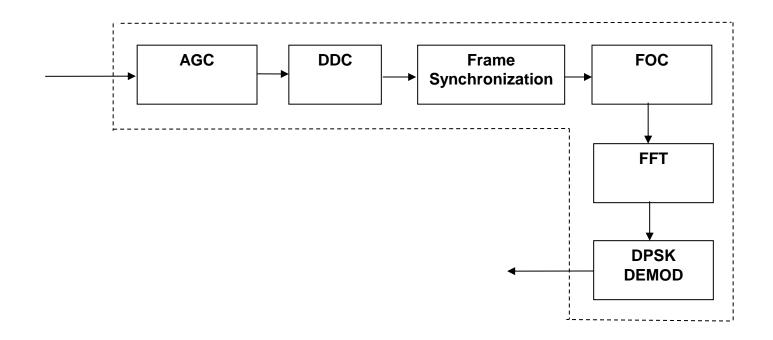

Time	Guard	OFDM	OFDM	OFDM	OFDM
Sync	Bits	Training	Data	Data	Data
Preamble		Syms	Sym 1	Sym	Sym 18

 Length of cyclic extensions varies according to channel multipath spread at different ranges, thus different data rate between 2 kbps to 10 kbps.

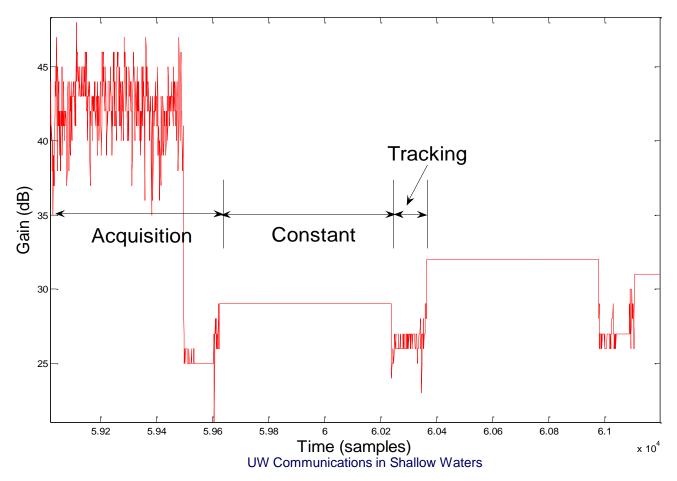


- Turbo Reed-Solomon Product Code
 - O Encoder: Product code based on Reed-Solomon code.
 - Decoder: Soft-input soft-output iterative decoding, Chase algorithm, and algebraic Reed-Solomon harding decoding.
- Benefit
 - OHigh code rate (0.75).
 - Easy to implement as compared to turbo convolutional code.
 - Better performance over multipath fading channels.

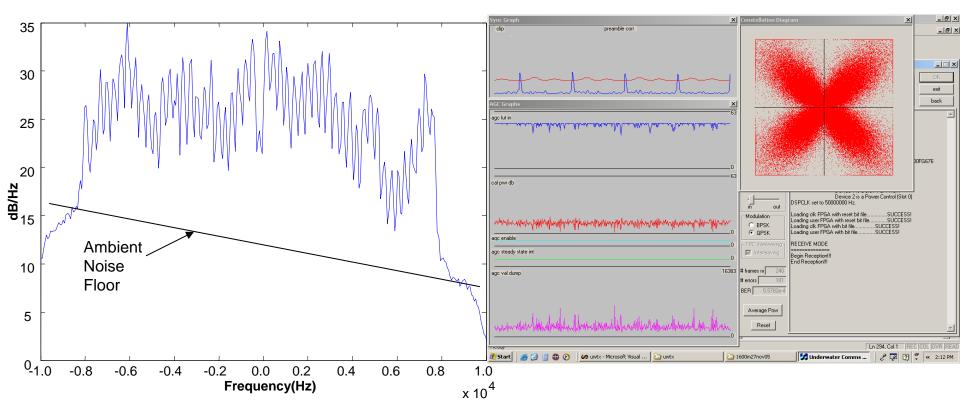
D S O NATIONAL LASONATORIES

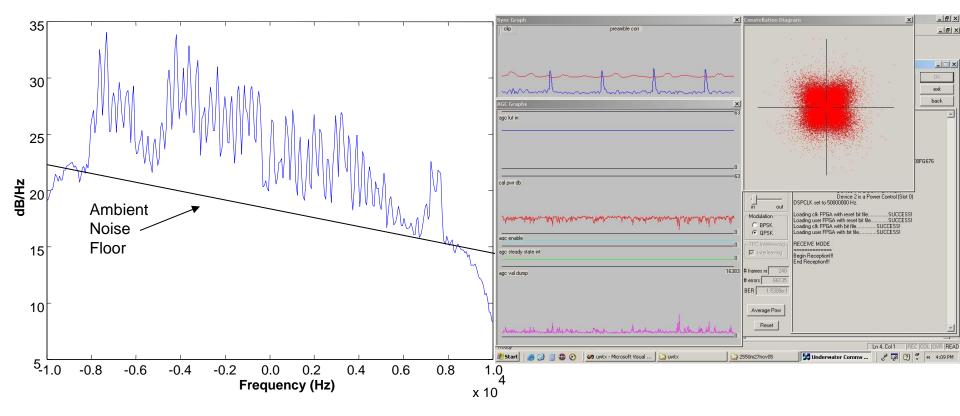


OFDM Transmitter



OFDM Receiver


AGC Performance


OFDM Performance

Category	Dist (m)	Mod	FEC	# of Rx frames	BER
				in error	
	80	DB/QPSK	BER: 0.04 to 0.1 (Uncoded only: – conditions not good enough to switch on channel coding)		
Short Range	140	DB/QPSK			
					5/
Medium Range	400	DBPSK (2.08kbps)	TRSPC	1	5e-5
	1000	DBPSK (2.08kbps)	TRSPC	0	<4e-6
	1000	DQPSK (4.16kbps)	TRSPC	0	<4e-6
	1700	DBPSK (4.77kbps)	TRSPC	0	<4e-6
	1700	DQPSK (9.54kbps)	TRSPC	0	<4e-6
Long Range	2500	DQ/BPSK	BER:0.04 to 0.1		

"Medium Range" Performance

• "Near/Far Range" Performance

FUTURE WORK

Rectify "Near" Range Problems Inter Channel Interference Sub-Channel Equalization OTime Synchronization Frame and Symbol Level Synchronisation Rectify "Far" Range Problem Improve the Peak to Average Power Ratio (PAR≈1) of OFDM Signal

SUMMARY

- Developed a versatile and reconfigurable underwater acoustic communication test bed
- Accumulated at-sea data for communication channel characterizations and communication signals
- Implemented a real time OFDM communication modem in FPGA
- Successful application advanced channel coding methods (TRSPC) to underwater communications
- The OFDM DB/QPSK (2.08-9.54kbps) BER performance of 4x10⁻⁶ was achieved at the ranges from 400m to 1700m.
- However, for ranges less than 400m and above 2500m, our OFDM modem did not perform well. We have identified the problems and recommendations were made to overcome them

THAT'S ALL FOLKS!

Have a pleasant day

ahead!

